32 research outputs found

    LaundroGraph: Self-Supervised Graph Representation Learning for Anti-Money Laundering

    Full text link
    Anti-money laundering (AML) regulations mandate financial institutions to deploy AML systems based on a set of rules that, when triggered, form the basis of a suspicious alert to be assessed by human analysts. Reviewing these cases is a cumbersome and complex task that requires analysts to navigate a large network of financial interactions to validate suspicious movements. Furthermore, these systems have very high false positive rates (estimated to be over 95\%). The scarcity of labels hinders the use of alternative systems based on supervised learning, reducing their applicability in real-world applications. In this work we present LaundroGraph, a novel self-supervised graph representation learning approach to encode banking customers and financial transactions into meaningful representations. These representations are used to provide insights to assist the AML reviewing process, such as identifying anomalous movements for a given customer. LaundroGraph represents the underlying network of financial interactions as a customer-transaction bipartite graph and trains a graph neural network on a fully self-supervised link prediction task. We empirically demonstrate that our approach outperforms other strong baselines on self-supervised link prediction using a real-world dataset, improving the best non-graph baseline by 1212 p.p. of AUC. The goal is to increase the efficiency of the reviewing process by supplying these AI-powered insights to the analysts upon review. To the best of our knowledge, this is the first fully self-supervised system within the context of AML detection.Comment: Accepted at ACM International Conference on AI in Finance 2022 (ICAIF'22

    Transportation in Social Media: an automatic classifier for travel-related tweets

    Full text link
    In the last years researchers in the field of intelligent transportation systems have made several efforts to extract valuable information from social media streams. However, collecting domain-specific data from any social media is a challenging task demanding appropriate and robust classification methods. In this work we focus on exploring geo-located tweets in order to create a travel-related tweet classifier using a combination of bag-of-words and word embeddings. The resulting classification makes possible the identification of interesting spatio-temporal relations in S\~ao Paulo and Rio de Janeiro

    Characterizing Geo-located Tweets in Brazilian Megacities

    Full text link
    This work presents a framework for collecting, processing and mining geo-located tweets in order to extract meaningful and actionable knowledge in the context of smart cities. We collected and characterized more than 9M tweets from the two biggest cities in Brazil, Rio de Janeiro and S\~ao Paulo. We performed topic modeling using the Latent Dirichlet Allocation model to produce an unsupervised distribution of semantic topics over the stream of geo-located tweets as well as a distribution of words over those topics. We manually labeled and aggregated similar topics obtaining a total of 29 different topics across both cities. Results showed similarities in the majority of topics for both cities, reflecting similar interests and concerns among the population of Rio de Janeiro and S\~ao Paulo. Nevertheless, some specific topics are more predominant in one of the cities
    corecore